If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-77x^2-17x+4=0
a = -77; b = -17; c = +4;
Δ = b2-4ac
Δ = -172-4·(-77)·4
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-39}{2*-77}=\frac{-22}{-154} =1/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+39}{2*-77}=\frac{56}{-154} =-4/11 $
| x=1/4+√29/16 | | -8(3-4a)=-a+6(6a+1) | | 4a/5-8=2 | | 9/7+7m/2=81/14 | | -6z-3=-4z+1 | | t+5/6=7/3 | | w=25 | | 7(3x-2)=14x | | 0.95n=n+19 | | 4/3+2y=4y-1/3 | | 7z-5=30 | | .25(12-20x)=2x-5-6 | | 21x=4(5x-7) | | (x+2)^2=25 | | 5m+2=8m+2 | | 8k+2=-40 | | (x-3)^2=7 | | -5-8=7x+3-6x | | 2/7-4x=-4x+1/7 | | |8k-3|+5=-40 | | b/19-6b/19=45/19 | | 1÷3(9x+3)=3x+4 | | 4x/0.5=2x+2 | | 4+6x=-2/3 | | b-3+6b=37 | | 8v+3-2(-6v-2)=5v-5 | | -5(r+2)=-53 | | X+3=15+2x+5x | | -2(x-3)+5=2x-4(x+7) | | -28=1-3n | | -20x^2+11x+4=0 | | 32−(3c+4)=2(c+5)+c |